Ak-montazh.ru

Интернет-энциклопедия по ремонту
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Выбирая вентилятор для дома или квартиры, следует учитывать множество важных факторов. К ним относятся, в первую очередь, размер воздуховода, в котором он будет смонтирован и площадь обслуживаемого помещения, и максимальный уровень звукового давления, который создает вентилятор при работе. Кроме того, требуется правильно рассчитать необходимое количество подаваемого воздуха, которого будет достаточно для размеров определенной комнаты. Также одним из основополагающих параметров, на которые необходимо обращать внимание, является давление, создаваемое вентилятором.

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

К первой относят приборы с напором < 1 кПа, второй — 1—3 кПа и более, третьей — больше 3—12 кПа и выше. В жилых строениях используют устройства первой и второй категории.


Аэродинамическая характеристика осевых вентиляторов на графике: Pv — полное давление, N — мощность, Q — расход воздуха, ƞ — КПД, u — скорость, n — частота вращения

В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Выводы и полезное видео по теме

Обзор физических показателей, которые нужны для измерений:

Роль давления в вентиляционной сети:

Вентилятор — простая конструкция в виде колеса с лопастями. Одновременно это главная часть вентиляционной системы. Механический прибор влияет на напор в воздуховоде и определяет эффективность вентиляции.

Если хотите рассчитать давление вентилятора, разберитесь с такими величинами, как скорость, расход воздуха, мощность. Вы будете лучше понимать суть измерений. Главный показатель, полный напор измеряйте по описанных нами схемах.

Если у вас есть вопросы — задавайте их в форме под статьей. Пишите комментарии и обменивайтесь ценными знаниями с другими читателями. Возможно, у вас есть опыт в проектировании систем вентилирования – он будет полезен в чьей-то конкретной ситуации.

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.


Осевые вентиляторы используют отдельно и в воздуховодах, они эффективно работают там, где нужно переносить большие массы воздуха при относительно низком давлении

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) – Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) – Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 – Рст 1. Это второстепенный параметр.


Проектировщики подают параметры с учетом небольшого засорения или без такового: на изображении показано несоответствие статического давления одного и того же вентилятора в разных вентиляционных сетях

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Читайте так же:
Реквизиты документа по установке газовой колонки в квартире

Общее понятие о конструкции агрегата и его назначении

Осевой вентилятор — это лопастная воздуходувная машина, которая передает механическую энергию вращения лопастей рабочего колеса воздушному потоку в виде потенциальной и кинетической энергии, а он затрачивает эту энергию на преодоление всех сопротивлений в системе. Осью рабочего колеса данного типа является ось электродвигателя, она располагается по центру воздушного потока, а плоскость вращения лопастей перпендикулярна ему. Агрегат перемещает воздух вдоль своей оси за счет лопаток, повернутых под углом к плоскости вращения. Крыльчатка и электродвигатель закреплены на одном валу и постоянно находятся внутри воздушного потока. Такая конструкция имеет свои недостатки:

  1. Агрегат не может перемещать воздушные массы с высокой температурой, которые могут повредить электродвигатель. Рекомендуемая максимальная температура — 100° C.
  2. По той же причине не допускается применять этот тип агрегатов для перемещения агрессивных сред или газов. Перемещаемый воздух не должен содержать липких включений или длинных волокон.
  3. В силу своей конструкции осевой вентилятор не может развивать высокое давление, поэтому непригоден к использованию для вентиляционных систем большой сложности и протяженности. Максимальное давление, которое может обеспечить современный агрегат осевого типа, находится в пределах 1000 Па. Однако, существуют специальные шахтные вентиляторы, конструкция привода которых позволяет развивать давление до 2000 Па, но тогда уменьшается максимальная производительность — до 18000 м³/ч.

Достоинства этих машин следующие:

  • вентилятор может обеспечить большой расход воздуха (до 65000 м³/ч);
  • электродвигатель, находясь в потоке, успешно охлаждается;
  • машина не занимает много места, имеет небольшой вес и может быть установлена прямо в канале, что снижает затраты при монтаже.

Все вентиляторы классифицируются по типоразмерам, указывающим на диаметр рабочего колеса машины. Данную классификацию можно увидеть в Таблице 1.

Вернуться к оглавлению

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.


Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.


Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

Читайте так же:
Какую солнечную электростанцию купить для электроснабжения частного дома?


Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.


Анемометры и термоанемометры измеряют скорость потока в воздуховоде при значениях до 5 м/с или больше, анемометр следует выбирать по ГОСТ 6376—74

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Определение динамического давления в воздуховоде

Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.

Схема устройства и принципа работы воздуховода

Схема устройства и принципа работы воздуховода.

В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.

Поведение среды внутри воздухопровода

Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.

Формулы для аэродинамического расчета систем естественной вентиляции

Формулы для аэродинамического расчета систем естественной вентиляции.

Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах аэродинамики вентиляции.

При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними – 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.

Физический смысл параметра

Таблица расчета вентиляции

Таблица расчета вентиляции.

Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое – снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.

Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.

Читайте так же:
Не поднимается давление – срабатывает клапан сброса

В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.

Расчеты параметра по формулам

На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:

Схема организации воздухообмена при общеобменной вентиляции

Схема организации воздухообмена при общеобменной вентиляции.

  • Рд – динамическое давление в кгс/м2;
  • V – скорость движения воздуха в м/с;
  • γ – удельная масса воздуха на этом участке, кг/м3;
  • g – ускорение силы тяжести, равное 9.81 м/с2.

Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:

Здесь ρ – плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной – 1.2 кг/м3.

Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета – определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.

Сопротивление трению на 1 м круглого канала рассчитывается по формуле:

  • Рд – динамическое давление в кгс/м2 или Па;
  • λ – коэффициент сопротивления трению;
  • d – диаметр воздуховода в метрах.

Нюансы монтажа воздуховода.

Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:

  1. HB (кгс/м2) – общие потери в вентиляционной системе.
  2. R – потери на трение на 1 м канала круглого сечения.
  3. l (м) – длина участка.
  4. Z (кгс/м2) – потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).

Определение параметров местных сопротивлений вентиляционной системы

В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:

  1. Z = ∑ξ Рд.

Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.

Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.

Скорость воздуха, м/с0.511.522.533.544.5
Динамическое давление кгс/м 20.01520.06110.13740.24440.38170.54990.74830.97761.237
Скорость воздуха, м/с55.566.577.588.59
Динамическое давление кгс/м 21.5271.84862.1992.5812.99393.43733.91044.41494.9491

Из расчетных формул и данной таблицы хорошо видно, что значения не растут пропорционально возрастанию скорости воздуха.

Динамическое воздействие, оказываемое потоком воздуха на стенки воздуховодов, фасонных и прочих элементов, определяет потери давления на участке и является важным параметром, который необходимо учитывать в расчетах.

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

X Сообщение сайта
Alex_77

Просмотр профиля

Группа: Участники форума
Сообщений: 243
Регистрация: 23.5.2008
Пользователь №: 19029

NOVIK_N

Просмотр профиля

Группа: Участники форума
Сообщений: 1375
Регистрация: 19.7.2004
Пользователь №: 71

Читайте так же:
Падает давление в системе водоснабжения (колодец + насос “Водолей”)

Alex_77

Просмотр профиля

Группа: Участники форума
Сообщений: 243
Регистрация: 23.5.2008
Пользователь №: 19029

Skaramush

Просмотр профиля

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 20023
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

alem

Просмотр профиля

Группа: Участники форума
Сообщений: 3683
Регистрация: 24.4.2005
Из: Красноярск
Пользователь №: 710

Skaramush

Просмотр профиля

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 20023
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

alem

Просмотр профиля

Группа: Участники форума
Сообщений: 3683
Регистрация: 24.4.2005
Из: Красноярск
Пользователь №: 710

Мне кажется, что подтекст у этого вопроса другой: заполняется паспорт, и надо что-то написать в соответствующей графе. Без замера сразу сказать наиболее вероятную величину может только специалист, но если написать расчётную, то специалист это сразу увидит.

Как раз сейчас работаю на крупном объекте, среди заказчиков, — сейчас срочно переименовавшихся в девелоперы, с удовольствием вижу специалистов, хотя и несколько широкого профиля. В результате отсеялась половина подрядчиков по наладке, а у нас добавились объёмы. Вроде мелочь, а приятно.

Skaramush

Просмотр профиля

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 20023
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

zvyagaaa

Просмотр профиля

Индивидуальный член АВОК

Группа: Участники форума
Сообщений: 568
Регистрация: 26.7.2005
Из: Москва
Пользователь №: 1013

Angel77

Просмотр профиля

Группа: Участники форума
Сообщений: 49
Регистрация: 22.4.2008
Пользователь №: 18026

Skaramush

Просмотр профиля

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 20023
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

Angel77

Просмотр профиля

Группа: Участники форума
Сообщений: 49
Регистрация: 22.4.2008
Пользователь №: 18026

Может быть я сейчас задам глупый вопрос, но он меня очень тревожит..

Как правильно подсоединять трубку Пито к манометру ДМЦ?
Смотрю я инструкцию..тут приведен рисунок.. Я не могу понять есть ли разница в присоединении трубки к манометру если мерять полное,динам и статическое давление на всасывании или на нагнетании..

Допустим меряем полный напор на нагнетании. трубка против потока воздуха, там где + трубки (полость полного давления) соединяем с + на манометре.. А если на всасывании мерять? То + трубки соединять с — манометра?

Я запуталась..Помогите плиз.. Как соединять трубки для замеров всех давлений на всасывании и нагнетании. Может у кого рисунок есть..в интернете ничего не могу найти..

alem

Просмотр профиля

Группа: Участники форума
Сообщений: 3683
Регистрация: 24.4.2005
Из: Красноярск
Пользователь №: 710

Тревоги ваши напрасны: тот, кто поставил эту задачу, просто обязан показать путь к её решению. Если он сам не знает, то, следовательно, будет удовлетворён любым вашим решением. Если знает, то пусть расскажет.

Если же это типа экзамен, надо искать шпаргалку. Благодаря интернету это несложно. На этом сайте много книг про вентиляцию, почти в каждой из которых есть подробное изложение способов решения проблемы. Например, Сибикин, Отопление, вентиляция и кондиционирование воздуха, для ПТУ, стр. 258.

Если вы не расположены к теоретическим изысканиям, и хотите решить задачу экспериментально, то попробуйте разные варианты присоединения трубок, их немного, всего (n+1)!.

Настоящая трудность при определении давления вентилятора ожидает в другом месте, в получении надёжного среднего значения по нерегулярной сетке фактических, — особенно для круглых участков, где надо провести аппроксимацию в функцию, выраженную в полярных, а лучше сразу в цилиндрических координатах. -Не всякая функция хорошо интегрируется аналитически.

Skaramush

Просмотр профиля

А пуд как был, он так и есть шестнадцать килограмм

Группа: Модераторы
Сообщений: 20023
Регистрация: 9.6.2006
Из: Самара, Димитровград
Пользователь №: 3117

Может быть я сейчас задам глупый вопрос, но он меня очень тревожит..

Как правильно подсоединять трубку Пито к манометру ДМЦ?
Смотрю я инструкцию..тут приведен рисунок.. Я не могу понять есть ли разница в присоединении трубки к манометру если мерять полное,динам и статическое давление на всасывании или на нагнетании..

Допустим меряем полный напор на нагнетании. трубка против потока воздуха, там где + трубки (полость полного давления) соединяем с + на манометре.. А если на всасывании мерять? То + трубки соединять с — манометра?

Я запуталась..Помогите плиз.. Как соединять трубки для замеров всех давлений на всасывании и нагнетании. Может у кого рисунок есть..в интернете ничего не могу найти..

"плюс на плюс" "минус на минус" — получили динамическое. Не важно, с какой стороны меряем.
Далее, если работаем на выхлопе — продолжаем работать с "плюсом" прибора. Если на всасе — с "минусом" — всё просто.

А насчет экспериментов.. на ММН смешного мало было когда спирт в трубки улетал. Каюсь, разок перепутал.

Читайте так же:
Подключение газа после замены гофротрубы в колонке

Пример подбора вентиляторов для системы вентиляции

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Тип Скорость воздуха, м/с
Магистральные воздуховоды6,0-8,0
Боковые ответвления4,0-5,0
Распределительные воздуховоды1,5-2,0
Приточные решетки у потолка1,0-3,0
Вытяжные решетки1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

голоса
Рейтинг статьи
Ссылка на основную публикацию