Понятие электрической цепи и ее составные части
Понятие электрической цепи и ее составные части
При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.
Что такое электрические цепи
Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.
Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.
Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.
В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.
Основные компоненты
Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.
- Первичные источники электрической энергии и сигналов могут преобразовывать энергию неэлектромагнитной природы в электрическую. Например, гальванический элемент, аккумулятор, электромеханический генератор.
- Вторичный тип, как на входе, так и на выходе имеет электрическую энергию. Изменяются только ее параметры – напряжение и ток, их форма, величина и частота. Примером могут быть выпрямители, инверторы, трансформаторы.
- Потребители активной энергии преобразовывают электрический ток в освещение или тепло. Это электротермические устройства, лампы, резисторы, электродвигатели.
- К вспомогательным компонентам относят коммутационные устройства, измерительные приборы, соединительные элементы и провод.
Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81
Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.
Классификация цепей
Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.
Разветвленные и неразветвленные
Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.
Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.
Линейные и нелинейные
Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.
В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.
Обозначения элементов на схеме
Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.
К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.
- Функциональная имеет минимальную детализацию. Основные функции узлов изображают прямоугольником с буквенными обозначениями.
- Принципиальная схема подробно отображает конструкцию использованных элементов, а также их связи и контакты. Необходимые параметры могут быть отображены непосредственно на схеме или в отдельном документе. Если указана только часть установки, это однолинейная схема, когда указаны все элементы – полная.
- В монтажной электрической схеме используют позиционные обозначения элементов, их месторасположение, способ монтажа и очередность.
Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.
Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.
Кроме основных чертежей есть схемы замещения.
Трехфазные электрические цепи
Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.
Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.
Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:
- экономичность выработки и транспортировки электроэнергии в сравнении с однофазной системой;
- простое генерирование магнитного поля, которое необходимо для работы трехфазного асинхронного электродвигателя;
- одна и та же генераторная установка выдает два эксплуатационных напряжения – линейное и фазное.
Трехфазная схема отличается значительной уравновешенностью системы. Способы соединения фаз получили структуру «звезда» и «треугольник». Обычно «звездой» соединяются фазы генерирующих электромашин, а фазы потребителей «звездой» и «треугольником».
Законы, действующие в электрических цепях
На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:
- Закон Ома для прямолинейного участка цепи, который определяет связь между электродвижущей силой, напряжением источника с протекающей в проводнике силой тока и сопротивлением самого проводника.
- Чтобы найти все токи и напряжения, используют правила Кирхгофа, которые действуют между токами и напряжениями любого участка электрической цепи.
- Закон Джоуля–Ленца дает количественную оценку теплового действия электрического тока.
В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.
В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».
Как производится расчет электрических цепей
Путь вычисления делится на множество способов, которые используются на практике:
- метод, основанный на законе Ома и правилах Кирхгофа;
- способ определения контурных токов;
- прием эквивалентных преобразований;
- методика измерений сопротивлений защитных проводников;
- расчет узловых потенциалов;
- метод идентичного генератора, и другие.
Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.
По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.
На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:
R = R1 + R’ + R”, где
R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.
R” – общее сопротивление резисторов R5 и R6.
Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.
Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:
Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:
U1 = IR1; U2 = IR’; U3 = IR”;
Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:
I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6
Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.
Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.
Глава 1 основные понятия и определения электрических цепей
Электрической цепью называют совокупность электротехнических устройств, образующих путь для прохождения электрического тока и предназначенных для передачи, распределения и взаимного преобразования электрической и других видов энергии.
Электромагнитные процессы, протекающие в устройствах электрической цепи, могут быть описаны при помощи понятий об электродвижущей силе (Э.Д.С.), токе и напряжении.
Электрические цепи, в которых получение электрической энергии, её передача и преобразование происходят при неизменных во времени токах и напряжениях, называют цепями постоянного тока. В таких цепях электрические и магнитные поля также не изменяются во времени. Так как токи и напряжения постоянны, то изменения этих величин во времени равны нулю:
; (1.1)
. (1.2)
Поэтому и напряжение на индуктивности UL, и ток через ёмкость, зависящие от изменения этих величин, также равны нулю:
; (1.3)
. (1.4)
Из этого следует, что в индуктивности сопротивление постоянному току равно нулю, а ёмкость, наоборот, представляет собой бесконечно большое сопротивление. Поэтому в цепи постоянного тока катушка индуктивности представляет собой закоротку (обычный провод, сопротивлением которого можно пренебречь), а ёмкость (конденсатор) – представляет собой разрыв цепи.
Основными элементами электрической цепи являются источники и приёмники электрической энергии, которые соединяются между собой проводами.
В источниках электрической энергии (электромагнитные генераторы, гальванические элементы, термопреобразователи и др.) происходит преобразование механической, химической, тепловой и других видов энергии в электрическую.
В приёмниках электрической энергии (электродвигатели, электротермические устройства, лампы накаливания, резисторы, электролизные ванны и др.), наоборот, электрическая энергия преобразуется в тепловую, световую, механическую, химическую и др.
Схема электрической цепи
Графическое изображение реальной электрической цепи с помощью условных символов и знаков называется электрической схемой.
Такая схема представляет собой идеализированную цепь, которая служит расчетной моделью реальной цепи и иногда называется эквивалентной схемой замещения. Эта схема по возможности должна отражать реальные процессы, происходящие в действительности.
При проведении расчетов каждый реальный элемент цепи заменяется элементами схемы.
В цепях постоянного тока чаще всего используют два основных элемента: источник энергии с Э.Д.С. Е c внутренним сопротивлением r и резистивный элемент (нагрузка) с сопротивлением R. Под внутренним сопротивлением генератора r понимают сопротивление электрическому току всех элементов внутри генератора.
Сопротивление приёмника R характеризует потребление электрической энергии, то есть превращение электрической энергии в другие виды с выделением мощности:
. (1.5)
Источник Э.Д.С. изображают в виде окружности диаметром 10мм со стрелкой внутри, которая указывает положительное направление Э.Д.С. (или направление увеличения потенциала).
Резистивный элемент принято изображать в виде прямоугольника размером 10 x 4 мм.
Для проведения анализа электрической цепи важно выделить такие понятия, как ветвь, узел и контур.
Ветвь – участок электрической цепи, образованный последовательно соединёнными элементами и характеризующийся собственным значением тока в данный момент времени.
Узел – это точка соединения трёх и более ветвей (если на электрической схеме в месте пересечения двух линий стоит точка, то в этом месте есть электрическое соединение 2х линий, в противном случае его нет).
Контур – замкнутая часть цепи, состоящая из нескольких ветвей и узлов. Различают такие понятия, как геометрический и потенциальный узел.
На рис. 1.2 приведена схема электрической цепи, содержащей 4 геометрических узла, 3 потенциальных узла и 5 ветвей.
Заземление любой точки схемы означает, что потенциал этой точки принят равным нулю. Токораспределение в такой схеме не изменяется, так как никаких новых ветвей, по которым могли бы протекать токи не образуется. Если же заземлить 2 точки схемы и более, то в этом случае в схеме токораспределение изменится.
При проведении расчетов электрических цепей в электротехнике пользуются некоторыми упрощенными моделями:
1. Резистор рассматривается как линейный элемент с сопротивлением R величина которого остаётся постоянной. Однако в действительности при прохождении тока через резистор происходит выделение тепла, что приводит к нагреванию самого резистора и, следовательно, к изменению его сопротивления. Это изменение описывается следующим соотношением:
, (1.6)
где α – температурный коэффициент сопротивления, 1/град;
и
— сопротивление резистора при начальной и конечной температуре соответственно, Ом;
— начальная температура,
;
–конечная температура,
.
Для приближенных расчетов температурный коэффициент сопротивления чистых металлов можно считать равным 0,004 град -1 .
2. Сопротивлением соединительных проводов часто пренебрегают (если их длина невелика < 10 м), а если учитывают, то считают сосредоточенным в одном месте. При этом необходимо учитывать сечение S мм 2 , длину l и материал провода:
, (1.7)
где R – сопротивление проводника, Ом;
ρ – удельное сопротивление проводника, Ом мм 2 /м;
l — длина проводника, м;
S – поперечное сечение проводника, мм 2 .
Сечение проводника стандартизовано и выбирается из следующего ряда: 0,5; 1,5; 2,5; 4; 6; 10;16; 25; 25; 35; 50; 75; 90; 120мм 2 . При выборе сечения проводов необходимо учитывать, чтобы падение напряжения в линии ∆U при заданной протяженности не превышало допустимого значения 5-10% от номинального.
При рассмотрении электрических цепей совокупность сопротивлений резисторов, соединённых произвольным образом, целесообразно представить в виде одного резистора, обладающего эквивалентным сопротивлением Rэ.
Такой элемент, заменяющий часть цепи и имеющий два входных зажима называется пассивным двухполюсником.
Если выделенная часть цепи содержит источник Э.Д.С. или тока, то соответствующий эквивалентный элемент будет называться активным двухполюсником.
На схемах необходимо указывать положительное направление Э.Д.С. и токов. Это нужно для того, чтобы при проведении расчетов по тем или иным методам было возможным составить необходимые уравнения.
В цепях постоянного тока с одним источником электрической энергии эти направления легко определить при заданной полярности источника (ток на нагрузке течет от плюса к минусу).
В сложных цепях направления токов и напряжений на отдельных участках сразу определить трудно. Поэтому для составления необходимых уравнений, из которых найдутся токи и напряжения участков цепи, эти направления задают произвольно.
Если после решения уравнений значения тока или напряжения для участка цепи окажется отрицательным, то это означает, что в действительности этот ток и напряжение имеют другое направление.
Для цепей переменного тока также указывают условные положительные направления, хотя и токи, и напряжения изменяются во времени.
Электрические цепи для чайников: определения, элементы, обозначения
Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!
Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.
Электрические цепи
Электрическая цепь – это совокупность устройств, по которым течет электрический ток.
Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:
Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.
Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.
Электрическая цепь
Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.
По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.
Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.
Элементы электрических цепей
Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.
Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.
Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.
Существуют условные обозначения для изображения элементов цепи на схемах.
Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.
Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.
Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.
При решении задач и анализе схем используют следующие понятия:
- Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
- Узел – соединение ветвей цепи;
- Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.
Чтобы понять, что есть что, взглянем на рисунок:
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Классификация электрических цепей
По назначению электрические цепи бывают:
- Силовые электрические цепи;
- Электрические цепи управления;
- Электрические цепи измерения;
Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.
Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.
Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.
Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.
Расчет электрических цепей
Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.
Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:
Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов
Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!
Электрическая цепь и ее составные части
Электрической цепью называют набор устройств, предназначенных для прохождения по ним электрического тока. Назначение электроцепи — транспортировка электроэнергии потребителю для ее последующего преобразования в другие виды энергии: механическую, тепловую, световую или электрохимическую. Из каких элементов состоят электрические цепи и как обозначаются на графических схемах – об этом рассказывается в данной статье.
Составные части
Любая электрическая цепь имеет следующие базовые элементы: источник тока, потребители тока, соединительные провода. Потребители тока могут состоять из более мелких элементов второго уровня, каждый из которых имеет свое наименование, функцию и параметры.
Для удобства электрические цепи изображают в виде графических схем, в которых используются общепринятые условные символы различных элементов. Обозначения элементов электрических цепей имеют интернациональный характер, классифицированы и систематизированы.
Рис. 1. Обозначения базовых элементов электрических схем:.
Разновидности цепей
Различают цепи для постоянного и переменного токов. Постоянный ток не меняет своего направления. Пример сети постоянного тока — электрические цепи автомобилей. Переменный ток меняет свое направление с определенной частотой. График зависимости переменного тока от времени в нашей сети имеет синусоидальный вид. Полярность изменяется 50 раз в секунду, что соответствует частоте 50 Гц. Под внутренней частью цепи подразумевают источники электропитания. Под внешней — провода, переключатели, бытовые и измерительные приборы.
Элементы цепи
Все электрические цепи служат для производства, передачи и потребления электрической энергии. Элементы цепей подразделяются на пассивные и активные. К пассивным относятся потребляющие и передающие электроэнергию: лампочки, нагревательные элементы, электродвигатели и т.п. К активным —- источники, генерирующие электроэнергию: аккумуляторы, генераторы, солнечные батареи, термодатчики. Кроме этого элементы делятся на двухполюсные (два вывода) и многополюсные ( три и более выводов).
Примеры составных частей электрической цепи:
- Источник. Обычно это аккумулятор, гальванический элемент или генератор. Реже, но бывают солнечные батареи или ветрогенераторы;
- Проводник. Необходимый элемент для транспортировки электроэнергии от источника к потребителю;
- Потребитель. Осветительные и нагревательные приборы, двигатели, бытовая техника, компьютеры;
- Переключающие (коммутирующие) устройства. В простейшем варианте — выключатель.
Электрический ток течет только по замкнутой цепи. Если цепь разомкнуть, то движение электронов прекратится.
Потребители электроэнергии
Перечислим основных потребителей:
- Резисторы — потребители, которые могут иметь как постоянное, так и переменное сопротивление;
- Конденсаторы — потребители, имеющие емкостные свойства;
- Индуктивности — потребители, создающие магнитное поле;
- Электродвигатель — потребитель, преобразующий электрическую энергию в механическую.
Контур, узел, ветвь
Для описания и анализа схем используются следующие термины:
- Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
- Узел — место соединения двух и более ветвей;
- Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.
Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.
Рис. 3. Примеры участков схем: ветвь, узел, контур:.
Что мы узнали?
Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.