Солнечные батареи для отопления дома: виды, как выбрать и правильно их установить
Солнечные батареи для дома, как выбрать и что нужно обязательно учитывать
Солнечный свет, в качестве альтернативного источника энергии, активно используют во всем мире. И это не только независимость от природных ископаемых, которые не безграничны, но и значительный вклад в экологию всей планеты.
Одним из способов получения такой энергии являются солнечные панели или батареи. По научному эти системы называются фотоэлектрическими панелями.
Так что же это за системы и как они работают
Фотоэлектрические системы энергоснабжения (ФСЕ) работают по принципу физического закона фотоэффекта. Не вдаваясь в подробности его можно описать как превращение солнечного света в электрические микроразряды.
Как известно, солнце это неограниченный источник энергии, но только незначительная ее часть доходит к поверхности земли. Однако и этой энергии вполне достаточно, учитывая что современные панели могут использовать до 45% от ее количества.
Где уже применяются и для кого актуальны
Солнечные панели на крышах частных домов
Современный мир уже давно использует ФСЕ в промышленных масштабах, особенно это актуально для стран где солнечный свет активен большую часть года. Сегодня же, благодаря снижению цен на это оборудование и росту стоимость электричества, их часть используют частные дома и дачи в качества основного или дополнительного источника энергии.
А что же с квартирами? Здесь все сложнее, во первых нет достаточной свободной площади для установки панелей. Во вторых это сложно согласовать в различными надзорными органами.
В целом, такую задачу можно решить, но обойдется установка оборудования в многоквартирном доме значительно дороже, чем в частном доме.
Как выбрать солнечную батарею
Прежде чем установить такую систему в доме нужно определится с видом самих панелей и комплекта оборудования в целом. И здесь есть несколько очень важных моментов, которые нужно знать и от которых зависеть эффективность установки.
Определяемся с системой
Как выглядит комплект оборудования и как он работает
В комплект солнечных батарей сходят сами панели, аккумулятор, контроллер и инвертор. В некоторых случаях система может быть другой, в зависимости от ее назначения, давайте рассмотрим их подробнее.
- Автономные системы. Предназначена для обеспечения электроэнергией объекта который не подключен к стационарной сети. Электроснабжение в дневное время происходит от панелей, остаток накапливается в аккумуляторных батареях. Этот заряд расходуется в вечернее и ночное время, а также когда солнечного света не достаточно.
- Открытые системы. Их еще называют безаккумуляторными, что значительно снижает цену. Такой вариант предусматривает обеспечение объекта электроэнергией только во время дневной солнечной активности. В остальное время потребление производится с сети через инвертор. Он выбирает источник потребления в зависимости от текущей нагрузки. Во многих странах электричество ночью дешевле, поэтому такой вариант экономически оправдан.
- Комбинированные системы. Этот вариант предусматривает наличие полного комплекта, включая АКБ. В пиковые нагрузки, если не хватает запаса аккумуляторов, инвертор берет недостающую мощность из сети. Такой вариант актуален для домов где возникает периодическая необходимость в большом количестве электричества, а так же если нет необходимого количества резервных батарей.
- Реверсные системы. Промышленный вариант, а так же, в некоторых странах частным домовладениях разрешено их устанавливать для продажи электричества. Такие установки отличаются большим количеством батарей, задача которых выработать максимум электричества и отправить его в сеть через реверсный счетчик. Киловатты, отправленные таким образом оплачиваются энергокомпаниями по так называемому “зеленому тарифу”. Этот как экономический шаг, дающий возможность снизить энергозависимость, так и политический, показать миру что страна делает свой вклад в экологию.
Виды солнечных панелей
От этого элемента напрямую зависит эффективность работы всей системы, поэтому к их выбору стоит отнестись серьезно. Их всего три вида, но массовое применение получили только два, о них подробнее.
Монокристаллические
Каждый фотоэлемент состоит из одного кремниевого кристалла. Они самые эффективные за счет одностороннего направления этих кристаллов, КПД составляет 20% – 24%, но и стоят немного дороже. По внешнему виду их легко определить, панели имеют насыщенный синий цвет и округленные края.
Цена панели 250 Вт – 170-200 долларов .
Поликристаллические
Здесь мелкие кремниевые кристаллы объедены в фотоэлементы, что не позволяет сделать однотонную поверхность. Это отрицательно сказывается на КПД панели, ее эффективность примерно на 18% меньше монокристальных. Однако, производство таких батарей менее сложное, а значит они дешевле.
Цена панели 250 Вт – 150 долларов .
Амфорные
Представляют собой слой полупроводника (кремневодорода), напыленный на гибкую подложку. За счет своей гибкости могут монтироваться на криволинейные поверхности. Невысокий КПД, в среднем 10,4%. Однако, такие панели имеют более высокое поглощение, что делает их эффективнее в пасмурную погоду.
Цена панели 150 Вт – 250 долларов .
Сравнительная таблица уровня КПД
Соотношение производительности разных типов панелей различных производителей
Эффективность работы солнечной электростанции по месяцам
По сути, выбирать панели стоит исходя их двух параметров: финансовых возможностей и доступной свободной площади. Если вы хотите немного сэкономить, но обладаете большими площадями для установки, можете взять поликристалические. Если же место ограничено, но нужно выжать максимум, берите монокристалические.
Старение панелей
Еще один важный момент, который нужно знать, это коэффициент старения. С каждым годом производительность блоков немного снижается. Монокремний стареет за 25 лет примерно на 17 – 20%, то для монокристаллических элементов этот показатель может быть все 30%.
Что такое концентрационные солнечные лучи и как они влияют на производительность
Как можно судить из фото иллюстрации, чем больше затенена панель тем меньше ее производительность.
Видео обзор панелей
Инвертор, что нужно знать о нем
Подключение инвектора в сети
Без этого элемента система солнечных батарей просто не сможет работать. Он выполняет функцию преобразователя постоянного тока от панелей в переменный с напряжением 220 вольт. Их мощность может быть от 100 до 8000 Вт.Но, не все так просто, существует 3 вида инвекторов:
- автономные;
- сетевые;
- многофункциональные.
Автономный инвертор (обозначение off grid). Этот прибор установлен внутри системы, выполняя все функции, но не имеет технической возможности для подключения к внешней сети. Не может перенаправлять электричество в аккумуляторы
Сетевой (или синхронный с обозначением on grid) может функционировать с подключением к внешней энергосети. Он может регулировать потоки энергии в зависимости от необходимой мощности. При недостатке электричества от батарей будет брать необходимое с сети. При переизбытке отправлять излишки в аккумуляторные батареи. Излишки электричества также могут быть перенаправлены во внешнюю сеть (если не подключены АКП или они полностью заряжены).
Многофункциональный инвертор. Универсальный вариант, работающий как оба предыдущие типа устройств. Также он обладает большим количеством дополнительных настроек, поэтому самый дорогой. Лучший вариант для домашних электростанций.
Подробная статья о инверторах, как правильно выбрать, что смотреть.
Более подробно о контроллере
Этот прибор контролирует зарядку аккумуляторных батарей. Он ограничивает подачу тока от панелей на АКП когда их, максимально возможный по техническим параметрам, уровень заряда достигнут. Это его основная функция, но некоторые типы этих приборов могут отслеживать и частично контролировать:
- Величину напряжения входа.
- Значение общей мощности солнечных элементов.
- Измерять температуру электролита в батарее.
Можно ли не использовать контроллер в системе? Можно, но в этом случае необходимо следить за уровнем заряда батарей и вручную отключать подачу питания на АКП. Если этого не делать, батареи очень быстро выйдут из строя, выкипает электролит и высохнут банки.
Какой выбрать аккумулятор для солнечных батарей
АКП накапливают излишки электричества во время максимальной солнечной активности и раздают его, когда это необходимо. Поскольку это оборудование стоит достаточно дорого, важно подобрать его правильно что получить максимальную выгоду. Рассмотрим самые распространенные типы.
Самое важное, что нужно знать при выборе батареи, это количество циклов зарядки-разрядки, которые она выдержит. Условно говоря, батарея заряжается днем, а отдает свой заряд ночью, пусть и не полностью, а даже 90%, это уже 1 цикл.
Литий-железо-фосфатные АКБ (lifepo4) – это самый лучший вариант для автономных электростанций любых видов. Относительно новый тип батарей, практической использование его на данный момент не превышает 10-12 лет.
Преимущества
Недостатки
Высокий КПД, в пределах 95-98%.
Средний срок службы 15 лет
Количество циклов зарядки 3000-10000
Не боится перепадов напряжения
Не требует никакого обслуживания
Свинцово-кислотные аккумуляторы. Они нам всем хорошо известны так как стоят практически в каждом автомобиле. Самые распространенный в солнечных электростанциях.
КПД в пределах 80%.
Уязвимость к низким температурам
Средний срок службы 10 лет
Количество циклов зарядки 2000
AGM-аккумуляторы. Это самые слабые по всем показателям батареи. КПД не превышает 80%, не более 500 циклов заряда и рабочая температура в пределах +15-25 градусов. Это делает их неконкурентоспособными как по качеству так и по цене, относительно других типов.
Видео обзор аккумулятров
Какой комплект солнечных батарей выбрать для дома
Типичный комплект солнечной электростанции
Такие системы бывают всего нескольких видов, разобраться в них не сложно. Собирать комплект этого оборудования стоит исходя из ваших задач, давайте рассмотрим несколько вариантов.
- Для обеспечения электричеством в дневное время без доступа к внешней сети вам понадобится (это самый дешевый вариант):
- необходимое по расчетам количество панелей,
- автономный инвертор.
- Если хотите обеспечивать свой дом или дачу круглосуточно, при этом не важно есть ли доступ к сети или его нет, необходим более полный комплект оборудования:
- солнечные панели,
- сетевой или многофункциональный инвертор,
- аккумуляторные батареи,
- контроллер заряда.
- Если же хотите пользоваться энергией солнечных панелей только днем, а в остальное время брать электричество с сети, вам понадобится:
- необходимое по расчетам количество панелей,
- сетевой или многофункциональный инвертор.
- Для продажи выработанной от солнца электроэнергии, например по зеленому тарифу в Украине, вам понадобится:
- солнечные панели,
- сетевой или многофункциональный инвертор,
- аккумуляторные батареи,
- контроллер заряда,
- реверсный счетчик.
Это основные комплекты солнечных электростанций, которые применяются в частных домовладениях.
Видео обзор комплектов
Немного практических расчетов цены системы
Установка солнечных батарей мощностью до 1 кВт/час = 90 000 руб (без аккумуляторная система, 8 монокристаллов и автономный инвертор). Бытовые нужды, плюс теплые полы.
Считаем рентабельность. Допустим, месяц расходуем:
- теоретическая выработка 20 кВт в сутки, 600 кВт в месяц
- 90 000 : 600 = 150 руб. за 1 кВт
- Цена 1 кВт обычной электросети = 5.4 руб. за 1 кВт
- 150 (солн.бат.) : 5,4 (обыч.сеть) = 28
Таким образом мы вычислили что солнечное электричество в 28 раз дороже обычной сети, цифра пугает, но не все так плохо. Теперь рассчитаем окупаемость:
Стоимость в год, при расхода 600 кВт = 38000 руб.
Вложили 90 000 руб, делим на годовой расход, теоретическая окупаемость наступить через 2.3 года. Однако, средне годичный световой день для Московской области составляет 34 %, это значит что наши батареи будут работать только треть времени, соответственно их срок окупаемости увеличится ровно в 3 раза, то есть до 6.9 года.
Солнечный коллектор, или гелиосистема, оборудование, предназначенное для использования в качестве альтернативных источников энергии. Такие системы давно используют во многих странах .
Одним из видов твердотопливных, как правило водонагревательных, котлов являются пиролизные, или газогенераторные установки. В этой статье мы рассмотрим принцип их .
Воздушные тепловые насосы относятся к категории современного оборудования, использующего в работе альтернативные источники энергии. Источником тепла для них является окружающая .
Данная таблица поможет выбрать наиболее эффективный и дешевый вид топлива. Здесь собраны все наиболее часто применяемые материалы для отопления частных .
Подключение солнечных батарей для отопления частного дома
Отопление – самая затратная статья в квитанции об оплате за жилище. Современная тенденция развития рынка такова, что традиционные источники энергии дорожают. Однако расходы можно снизить, если задействовать возобновляемые природные ресурсы, которые доступны совершенно каждому.
Одно из решений проблемы – установить солнечные батареи для отопления дома. Всего один квадрат покрываемой площади позволит получить и переработать до 1300 кВт*ч энергии Солнца, часть которой можно направить на другие хозяйственные нужды (электроснабжение, подогрев воды и т. д.).
Современные солнечные кремниевые батареи представляют собой приборы, которые захватывают энергию солнца и преобразуют ее в электрическую. Основной принцип их работы основывается на физическом явлении фотоэлектрической реакции.
Принцип работы
Выпускаемые сегодня модели способны вырабатывать электроэнергию даже в облачную и слишком пасмурную погоду. Однако КПД одного модуля сравнительно невысок и составляет скромные 15-25%, вырабатывая в среднем 50-300 Вт электроэнергии в зависимости от текущей окружающей обстановки. Для достижения высокой производительности необходимо подключение нескольких, а иногда и десятков элементов в единую сеть.
Фотографии частных домов с подключенной системой солнечного отопления
Если говорить об отопительной системе на основе солнечных батарей, классическая схема состоит из трех элементов:
- Рассмотренный солнечный модуль, вырабатывающий электроэнергию
- Тепловой аккумулятор – изолированный от тепловых потерь бак, в котором находится нагреваемый Тэнами теплоноситель
- Отопительный контур, состоящий из трубных магистралей и радиаторов отопления, по которому теплоноситель циркулирует принудительным или естественным образом и отдает тепло окружающей среде
Видео — Дом на солнечных батареях
В зависимости от предпочтений и конкретной выбранной реализации солнечные батареи для отопления дома могут использоваться в других модифицированных схемах отопления, когда вместо коллектора устанавливается электрический котел проточного типа. Покупка необходимого оборудования обойдется дороже, однако отопление будет более практичным и экономичным.
Клик для увеличения
Еще один из вариантов реализации отопления на солнечных батареях – использование электрических обогревателей, теплых полов, электрических конвекторов и т. д. Таким образом, полученная электроэнергия потребляется для питания отопительных электроприборов. К подобным схемам прибегают лишь в небольших загородных домах.
Устанавливать солнечные коллекторы рекомендуется на крыше дома с южной стороны. Чтоб обогреть коттедж площадью свыше 100 квадратов, необходимо покрыть фотоэлементами до 35-40 кв. м. В доме нужно отвести отдельное помещение для размещения монтируемого отопительного оборудования – котельную.
Положительные и отрицательные стороны
Использование альтернативного отопления частных домов имеет свои неоспоримые преимущества. Установка и последующая эксплуатация солнечных модулей обладает следующими положительными сторонами:
- Продолжительный эксплуатационный срок – до 25-40 лет без необходимости дорогостоящих профилактических работ
- Лишнюю накопленную и переработанную солнечную энергию можно будет расходовать на другие нужды
- Независимость от служб ЖКХ и значительное уменьшение счетов за отопление
- Дом будет обогреваться на протяжении всего года
Однако имеются некоторые нюансы, которые ограничивают эксплуатацию отопления на солнечных батареях. Самый первый из них – географическое проживание. В том или ином районе солнце греет по-разному. Если оно появляется через сутки или лишь на пару часов в день, переоборудовать отопительную систему становится экономически невыгодно и следует подумать о других альтернативных источниках энергии (тепловые насосы, ветряные станции, биологическое топливо).
Клик для увеличения
Среди прочих отрицательных сторон можно отметить:
- Высокие первоначальные затраты
- Сложность монтажа оборудования
- Необходимость в резервном источнике отопления
Выбираем подходящий солнечный коллектор
Необходимо ознакомиться с рынком и выбрать самые подходящие солнечные батареи для отопления дома. Они бывают 3-х типов:
- Воздушные – внутри них располагается воздух и абсорбирующий тепло элемент. Несмотря на скромную стоимость, они должного распространения не получили, так как характеризуются низким КПД
- Вакуумные – внутри располагаются определенного диаметра стекло трубки, содержащие в себе трубки меньшего диаметра, по которым циркулирует теплоноситель. Между трубками создается вакуум, характеризующийся высокими теплопроводящими свойствами
- Плоские – наиболее распространенные коллекторы. Они представляют собой короб, лицевая сторона которого накрыта стеклом. Под ним пролегает абсорбирующий тепло элемент, который контактирует с трубками, содержащими теплоноситель. Энергия последнего забирается и аккумулируется в электрическую
Видео тест
Когда стоит обратить внимание на солнечные батареи
Переоборудовать стандартную отопительную систему в более современную и установить солнечные батареи для отопления дома можно в любой момент. Однако останавливаться на таком решении стоит лишь при выполнении нескольких важных правил:
- Была произведена проверка уровня инсоляции мастером, на основании результатов которой удалось узнать, насколько эффективным будет каждый квадратный метр установленных батарей. Она даст возможность определить наиболее оптимальную покрываемую модулями площадь
- Дом необходимо обязательно утеплить, чтобы снизить уровень нежелательных потерь тепла
- Стоит проанализировать каждый из месяцев отопительного периода. Если количество солнечных дней менее 20, большую часть времени небо затягивают тучи и облака, гелиосистемы рекомендуется заменить тепловыми насосами
- Обязательно должна присутствовать резервная отопительная система, чтобы обезопасить себя от непредвиденных обстоятельств
Как подключить солнечную батарею
Прежде чем начать подключение солнечных батарей к отопительной системе, необходимо определиться с типом циркуляции теплоносителя по трубным магистралям:
- Принудительная
- Естественная
Наиболее востребованной считается система с принудительной циркуляцией. Ее обустройство обойдется дороже за счет приобретения дополнительного оборудования и автоматики. Однако многие владельцы собственных домов ставят превыше комфорт и практичность.
Клик для увеличения
Классическая схема подключения солнечной батареи к потребителю выглядит следующим образом:
- Вначале по всем правилам на крыше размещают закупленные солнечные элементы и соединяют их друг с другом
- В отведенном помещении необходимо установить контроллер, который будет следить, сколько энергии производится в данный момент
- За контроллером должны идти аккумуляторы, которые будут накапливать в себе лишнюю энергию и снабжать ею в тех ситуациях, когда солнечные модули не справляются со своей задачей
- За аккумуляторами устанавливается инвертор, который служит для преобразования электрической энергии к требуемым характеристикам
- За инвертором располагаются потребители, роль которых может выполнять электрический котел отопления, накопительные баки с Тэнами, обогреватели и прочие греющие установки
Если солнечная батарея подключается к водяному отоплению с принудительной циркуляцией, на выход коллектора, обратку и бак-накопитель устанавливают датчики температуры (термостаты), которые подсоединяются к автоматике. Последняя в свою очередь будет управлять работой всей системы, при определенных условиях включать или выключать ее.
Наиболее просто осуществляется подключение солнечных модулей к отоплению с естественной циркуляцией. Однако автоматизировать ее будет очень сложно. Необходимо придерживаться следующих правил:
- Накопительный бак располагают выше уровня коллектора
- Нижний вывод подключается к обратке
- Верхний вывод подключается ко входу разогретого теплоносителя
Прочие нюансы подключения
Предусмотреть солнечные батареи для отопления дома необходимо на этапе проектирования или строительства дома, чтобы избежать лишних хлопот. Нужно придерживаться нескольких важных правил:
- Установка батарей должна вестись преимущественно на южной стороне. Перед модулями не должно располагаться деревьев или более высоких построек, которые будут преграждать путь свету или отбрасывать на них свою тень – это существенно снизит эффективность
- Необходимо убедиться, что стропильная система обладает достаточным запасом прочности. Она должна выдерживать не только закрепленные модули, но и снежный покров в зимний период, иначе может произойти обрушение кровли
- Оптимальный угол ската крыши – в интервале 30-45 градусов в зависимости от того, как высоко поднимается на протяжении суток солнце
- Чтобы увеличить эффективность отопительной системы или распараллелить несколько контуров, иногда ставят более одного накопительного коллектора
- К гелиосистемам рекомендуется подключать отопительные контуры с более низкой температурой циркулирующего теплоносителя (панельные змеевики, водяные теплые полы и т. д.)
Решившись установить солнечные батареи для отопления дома, необходимо быть готовым к большим первоначальным затратам. Стоимость требуемого оборудования и проводимых работ обойдется от 30 тыс. и выше в зависимости от сложности отопительной системы, выбранных модулей и их количества.
Окупаемость также зависит от большого числа факторов. Если зимы холодные, солнечные и продолжительные, сэкономить затраченные средства удастся через 2-3 года при эксплуатационном сроке до 30 лет. Однако не стоит торопиться, узнав подробнее о других альтернативных методах отопления.
Солнечные батареи для отопления дома: типы батарей, особенности выбора, установка, отзывы пользователей
Используя солнечные батареи для отопления частного дома, каждый из нас может сберечь немалую часть содержимого своего кошелька.
Но какой из предлагаемых на сегодняшний день элементов выбрать, чтобы внедрение технологии принесло максимальный результат?
Тех, кто заинтересовался данным вопросом, приглашаем ознакомиться с нижеизложенным материалом.
Разновидности
В самом широком понимании термин «солнечная батарея» означает некоторое устройство, которое позволяет преобразовывать излучаемую Солнцем энергию в удобную форму с целью последующего использования в различных сферах человеческой жизнедеятельности. Для обогрева домов используются два типа солнечных батарей.
Фотоэлектрические элементы
Батареи этого класса часто называют преобразователями, поскольку с их помощью энергия солнечного излучения преобразуется в электрическую. Такое превращение стало возможным благодаря свойствам полупроводников. Ячейка фотоэлемента состоит из двух материалов, один из которых обладает дырочной проводимостью, а другой – электронной.
Поток фотонов, из которых состоит солнечный свет, заставляет электроны покинуть свои орбиты и мигрировать через Pn-переход, что и является, собственно, электротоком.
По виду используемых материалов различают три вида фотоэлектрических батарей: кремниевые, пленочные и концентраторные.
Кремниевые
К этому типу относится более трех четвертей выпускаемых сегодня солнечных электробатарей. Это обусловлено распространенностью кремния в земной коре, а также тем, что большинство технологий в сфере производства полупроводниковой электроники было ориентировано на работу именно с этим материалом.
В свою очередь элементы на базе кремния делятся на две разновидности:
- монокристаллические: наиболее дорогой вариант, КПД составляет 19% – 24%;
- поликристаллические: более доступны, но имеют КПД в пределах 14% – 18%.
Пленочные
При производстве фотоэлементов данной группы используются полупроводники, имеющие более высокий, чем у моно- и поликристаллического кремния, коэффициент поглощения света.
Это позволило на порядок уменьшить толщину элементов, что положительно отразилось на их стоимости. Применяются следующие материалы:
- теллурид кадмия (КПД – 15% – 17%);
- аморфный кремний (КПД – 11% — 13%).
Концентраторные
Эти батареи имеют многослойную структуру и характеризуются самой высокой эффективностью – около 44%. Основным материалом при их производстве является арсенид галлия.
Комплектация отопительной системы
Отопительная система на базе фотоэлектрических батарей состоит из следующих компонентов:
- собственно батареи;
- аккумулятор;
- контроллер: управляет процессом зарядки аккумулятора;
- инвертор: преобразует постоянный ток от батареи или аккумулятора в переменный с напряжением 220 В;
- конвектор, водогрейный котел или любой другой тип электрообогревателя.
Сетевая фотоэлектрическая система
Солнечные коллекторы
Батареи данной разновидности состоят из нескольких выкрашенных в черный цвет трубок, через которые перекачивается циркулирующий в системе отопления теплоноситель. При этом тепловая энергия солнечного излучения без всякого преобразования усваивается рабочей средой. В большинстве случаев в ее качестве используется смесь на основе пропиленгликоля (имеет свойства антифриза), но существуют и коллекторы, ориентированные на работу с воздухом. Последний после подогрева подается прямо в отапливаемое помещение.
В самом простом исполнении солнечный коллектор называется плоским. Он выполняется в виде бокса из стекла с темным покрытием, которое находится в контакте с проходящим по трубкам теплоносителем. Более сложное устройство имеют вакуумные коллекторы. В таких батареях трубки с теплоносителем помещены в герметичный стеклянный корпус, из которого откачивается воздух. Таким образом, содержащие рабочую среду трубки окружаются вакуумом, который исключает потери тепла от контакта с воздухом.
Комплектация гелиосистемы
Основными элементами гелиосистемы (системы солнечных батарей для дома) являются:
- солнечный коллектор;
- циркуляционный насос (в системах с естественной циркуляцией теплоносителя он может отсутствовать, но они являются малоэффективными);
- емкость с водой, играющая роль теплового аккумулятора;
- контур водяного отопления, состоящий из труб и радиаторов.
Схема реализации гелиосистемы с поддержкой отопления с суточным аккумулированием энергии
Достоинства и недостатки
Запитка системы отопления от солнечной батареи дает несколько выгод:
- Бесплатное тепло.
- Экологичность. Отсутствуют вредные выбросы в окружающую среду, а также уменьшается скорость расходования невозобновляемых энергетических ресурсов.
- Простота эксплуатации. Нет нужды связываться с доставкой и хранением какого-либо вида топлива, а также чисткой котла и дымохода. Не понадобится сооружать огромный теплообменник, как в случае с геотермальным отоплением. Правда, батареи необходимо очищать от пыли и грязи, но делать это приходится не так уж часто.
Однако, для рассматриваемой здесь технологии характерны и весьма существенные недостатки:
- Высокая стоимость оборудования для солнечных батарей для дома: в особенной степени это касается фотоэлементов. Стоимость 120-ваттного модуля отечественного производства варьируется в пределах от 10 до 16 тыс. руб. Солнечные коллекторы благодаря простоте изготовления получаются более доступными, но и они не каждому окажутся по карману: установка, генерирующая в солнечную погоду 1,5 кВт тепловой энергии, обойдется примерно в 20 тыс. руб.
- Хотя щедрое Солнце светит без перерывов и выходных, постоянно меняющиеся погодные условия делают этот источник энергии весьма нестабильным.
- Подверженность влиянию внешних факторов: выставленная на открытом воздухе солнечная батарея в качестве защиты может иметь лишь тонкий слой стекла. В ураган или при выпадении крупного града оно, конечно же, окажется бесполезным. При этом урон из-за высокой стоимости элементов будет весьма значительным.
Традиционные способы обогрева помещения не всегда удобны и выгодны, ведь дрова дорогие, а подвод газа осуществляется не везде. Отопление без газа и дров — выход из ситуации. Рассмотрим варианты: пиролизные и жидкотопливные котлы, тепловые насосы и солнечные батареи.
О том, как соорудить бойлер косвенного нагрева своими руками, читайте тут.
С ростом цен на энергоносители стоимость отопления также постоянно растет. В этой рубрике https://microklimat.pro/sistemy-otopleniya/geotermalnoe.html вы найдете информацию о геотермальном отоплении. Можно ли его считать альтернативой привычным способам обогрева помещения?
Особенности выбора
На работу в системах отопления ориентированы прежде всего солнечные коллекторы. Они усваивают тепло напрямую, а потому характеризуются наименьшими потерями.
Если позволяют средства, лучше приобрести вакуумную установку, которая является более экономичной. Для частного дома следует выбирать гелиосистему с жидким теплоносителем.
Жидкость имеет большую теплопроводность, что позволяет солнечному отоплению работать достаточно эффективно даже при небольших размерах коллектора. Если же необходимо обеспечить обогрев склада или павильона, то есть одноэтажного здания с большой площадью, более целесообразным будет применение воздушных коллекторов, но при условии, что вся поверхность крыши может быть отведена под их установку. За счет значительных размеров такая система обеспечит достаточное количество тепла, при этом возможность замерзания теплоносителя или его утечки будут полностью исключены.
Фотоэлектрические батареи ввиду низкого КПД и высокой стоимости для отопления домов почти не применяются, но сбрасывать их со счетов не следует. При интенсивной инсоляции их мощность будет вполне достаточной для подключения котла или кабельной системы «теплый пол». При этом владелец получит надежную и бесшумную систему, которая не нуждается в применении насоса или вентилятора.
Если для вашего региона характерно большое количество солнечных дней (20 и более в месяц), стоит выбрать монокристаллическую кремниевую батарею, эффективно работающую с направленным излучением.
Если же преобладают пасмурные дни, более подходящими окажутся поликристаллические элементы, способные хорошо усваивать рассеянный свет.
Установка солнечных батарей
Наилучшим местом для установки солнечных батарей для дома является южный скат крыши.
В «солнечном» доме она обычно является асимметричной (по площади южный скат значительно превосходит северный) или даже односкатной.
Расчет солнечных батарей для дома — важный этап перед их монтажом.
Особое внимание следует уделить расчету крепежной рамы и кронштейнов, в котором должны быть учтены возможные ветровые и снеговые нагрузки. Эту часть работ лучше доверить инженерам проектной организации, имеющей хорошую репутацию.
Эффективность гелиоколлекторов и фотоэлементов достигает максимальных значений в том случае, если солнечные лучи оставляют их поверхностью прямой угол. Поэтому весьма желательно предусмотреть возможность изменения угла наклона опорных конструкций с установленными на них солнечными батареями относительно горизонта. Никаких особых механизмов устанавливать не нужно: поворот батарей можно осуществлять вручную, благо делать это придется несколько раз за год.
Желательно, чтобы крыша, на которую монтируются фотоэлементы, имела светлый тон. Между ее поверхностью и батареями должен оставаться зазор. Соблюдение этих правил исключает перегрев фотоэлектрических элементов, вследствие которого их мощность существенно падает. Следует, правда, отметить, что указанные требования не относятся к панелям из аморфного кремния, которые отличаются «нетрадиционным» поведением: при охлаждении их производительность падает, а при нагреве — возрастает.
Человечество озадачено вопросом поиска новых видов энергии. Однако уже сейчас альтернативная энергия своими руками доступна, хотя такие системы и не очень распространены. Смотрите обзор имеющихся на сегодня вариантов: ветрогенератор, биогаз, солнечные панели и другие энергетические системы.
О том, как организовать систему отопления из полипропиленовых труб, читайте в этой статье. Преимущества ПП-труб и монтаж системы отопления.
Отзывы пользователей о солнечных батареях для дома
Обитатели умеренных климатических зон зачастую говорят о таких элементах с восторгом, считая их покупку и установку в системах отопления вполне целесообразной.
Здесь фотоэлектрические батареи и гелиоколлекторы, благодаря интенсивному солнечному излучению, существенную часть отопительного периода могут играть роль основного источника энергии, позволяя своему владельцу заметно уменьшить затраты на обогрев дома.
Население более высоких широт, напротив, публикует сдержанные, а иногда и отрицательные комментарии. Практический опыт часто демонстрирует нерентабельность установки солнечных батарей в таких регионах: расчетный срок окупаемости проекта может оказаться больше даже заявленного производителем срока службы элементов, который, как правило, несколько превосходит реальный. Остается ждать улучшения ситуации по мере развития технологий ситуация будет улучшаться, ведь потенциал солнечного излучения полномасштабно еще не освоен.
В своих отзывах многие пользователи рекомендуют уделять особое внимание выбору производителя фотоэлементов. Приятно отметить высокую оценку, которую получила отечественная продукция. Многие покупатели на личном опыте убедились в ее высоких рабочих качествах и надежности.
Видео на тему
Солнечные батареи для дома: как выбрать лучшие панели
Сегодня солнечные батареи стали реальными источниками альтернативного электроснабжения для частного дома. Они широко представлены на рынке, а использование солнечной мини-электростанции оказывается достаточно выгодным. Такое положение обусловлено постоянным ростом производства солнечных панелей и дополнительного оборудования, снижением цен на элементы системы и, как следствие, стоимости генерации.
Принцип работы солнечной батареи
Любая солнечная батарея представляет собой фотоэлектрический преобразователь, использующий для получения электрической энергии световую. Практическую ценность в настоящее время имеет фотоэлектрический эффект в полупроводниковых материалах.
Эффект основан на появлении в неоднородных полупроводниковых структурах свободных носителей электрического заряда при воздействии фотонов света. Он наблюдается в различных полупроводниках – на основе кремния, арсенида галлия, теллурида кадмия, крупных молекул полимеров.
За счет появления свободных носителей, энергии которых недостаточно для преодоления запрещенной зоны образуется разница потенциалов (напряжение) между электродами элемента. При подключении внешних цепей между ними возникает электрический ток.
Схема работы солнечных батарей
Фотоэлементы на базе различных полупроводников преобразуют в электрическую энергию различные части солнечного спектра Так, кристаллические кремниевые модули захватывают до 80% излучения со смещением в красную сторону, пленочные элементы на основе аморфного кремния могут работать и в инфракрасном диапазоне, диоксид титана поглощает фиолетовые и ультрафиолетовые лучи.
В некоторых лабораторных образцах исследователи вплотную подошли к 50%-й отметке. При получении таких же результатов в промышленном производстве стоимость генерации может снизиться более чем вдвое, по сравнению с современным уровнем.
Виды солнечных батарей
Основной признак классификации солнечных модулей – используемые при изготовлении полупроводниковые материалы. Сегодня более 80% занимают солнечные панели на основе кремния. Именно эти типы получили максимально широкое коммерческое применение, их предлагает подавляющее большинство работающих в отрасли продавцов.
В свою очередь, кремниевые гелиопанели подразделяются на:
Виды кремниевых гелиопанелей
Монокристаллические кремниевые солнечные элементы
Монокристаллические солнечные батареи представляют собой электрически соединенные элементы, изготовленные из тонких (240 мкм) пластин монокристалла кремния. Оптические оси ориентированы в одном направлении, используется материал высокой (более 99.99%) чистоты. Это обеспечивает максимальную эффективность преобразования. При теоретически возможном для кремниевого элемента КПД 30% у серийных образцов показатель достигает 18-24%.
Внешне монокристаллические батареи легко отличить – они имеют глубокий черный цвет, элементу в процессе порезки придается форма правильного квадрата (прямоугольника) со срезанными углами.
Технологий производства таких солнечных батарей – рекордсмен по стоимости среди кремниевых элементов. Высокая цена производства объясняется сложными процессами очистки сырья, выращивания монокристалла и его точной порезки.
В результате монокристаллические батареи имеют самую высокую цену – порядка 0.9-1.1 доллара на 1 Вт мощности.
Есть у таких элементов и другой серьезный недостаток – из-за точной ориентировки оптических осей кристаллов, оптимальную отдачу можно получить только при падении солнечных лучей перпендикулярно плоскости элемента. При существенном изменении угла освещения, а также в рассеянном свете наблюдается резкое снижение генерации.
Поликристаллические кремниевые элементы
Поликристаллические кремниевые элементы
В поликристаллических батареях элемент включает множество кристаллов с хаотической ориентацией оптических осей. Для их производства не требуется сырье с высокой степенью очистки – могут использоваться вторичные источники (в частности, переработанные кремниевые батареи), отходы металлургического производства.
В результате стоимость изготовления значительно снижается. Однако при этом уменьшается и эффективность преобразования – лучшие образцы демонстрируют эффективность на уровне 15-18%.
Внешне поликристаллические представляют собой правильной формы прямоугольные пластины насыщенного синего цвета. Стоимость генерации «синих» панелей составляет около 0.7-0.9: за 1 Вт. При этом они демонстрируют значительно меньшее снижение при рассеянном освещении и падении света под углами, отличными от 90 градусов.
Аморфные кремниевые батареи
Изготавливаются из аморфного (некристаллического) кремния a-Si, путем осаждения на гибкую подложку паров гидрида кремния. В результате образуется добиться стабильного фотоэлектрического эффекта получается уже при толщине пленки в несколько микрон.
Технологический процесс значительно удешевляется за счет минимального количества требующегося кремниевого сырья, сниженных требований к его чистоте, отсутствию сложных операций, таких как выращивание кристалла и его порезка.
Эффективность преобразования составляет порядка 8-11%, стоимость генерации лежит в пределах 0.5-0.7% за 1 Вт. Главный недостаток таких батарей – низкий КПД преобразования, что требует значительной площади для обеспечения необходимой мощности. Однако он с лихвой компенсируется возможностью установки на любые поверхности – гибкая подложка не требует ровных оснований и специальных конструкций для монтажа.
Кроме того, современные полиморфные модули могут работать с инфракрасным диапазоном, что существенно уменьшает потери эффективности при рассеянном освещении. В результате на долю аморфных элементов сегодня приходится порядка 10% мирового рынка.
Тонкопленочные CdTe батареи
Тонкопленочные CdTe батареи
Солнечные батареи на основе теллурида кадмия (CdTe) могут стать реальной альтернативой кремниевым элементам. В настоящее время они демонстрируют эффективность преобразования, в среднем, на 20% выше аналогичных аморфных кремниевых при стоимости на 20% ниже. Достигается это за счет уникальных характеристик полупроводника, обеспечивающую оптимальную ширину запрещенной зоны.
Изготавливаются такие панели путем нанесения слоя полупроводникового материала на тонкие пленки. Технология пока доступна ограниченному кругу производителей, однако серийный выпуск таких батарей уже налажен американской компанией First Solar.
Полимерные солнечные панели
В полимерных солнечных модулях фотоэффект обеспечивает слой «полимерного полупроводника» – больших молекул органических соединений. В настоящее время технология таких изделий близка к развертыванию крупномасштабного производства (некоторые европейские компании уже наладили коммерческий выпуск).
Полимерные солнечные панели
По оценкам эффективность преобразования таких устройств лежит в пределах 8-11%. За счет рекордно дешевого производства, использования гибких полимерных материалов, отсутствия проблем с утилизацией, в ближайшей перспективе полимерные гелиомодули смогут составить серьезную конкуренцию уже выпускающимся изделиям.
Производителями также ведутся активные разработки солнечных панелей на основе:
- арсенида галлия, селенидов меди-индия-галлия (CGIS);
- гибридных технологий, в которых несколько полупроводниковых элементов на разной основе работают в разных частях солнечного спектра;
- фотосенсибилизированных ячеек, с колбами Гретцеля в качестве рабочего элемента;
- наноантенн, в которых солнечный свет как электромагнитное излучение индуцирует ЭДС и др.
Выбор солнечных батарей
При выборе солнечных батарей необходимо определить не только тип, но и электрические параметры – мощность и напряжение.
Выбирают тип солнечной панели из условий инсоляции (количества солнечных дней, интенсивности излучения):
- Так, монокристаллические кремниевые батареи вполне подойдут для установки в южных регионах.
- В Средней полосе и на других российских территориях оптимальным вариантом будут поликристаллические панели, хорошо зарекомендовавшие себя в условиях рассеянного освещения.
- В северных широтах следует обратить более пристальное внимание на аморфные модули, которые позволяют создать значительную площадь батареи без дополнительных монтажных работ.
Внимания требует и категория качества. В маркировке батарей этот параметр указывается как Grade A, B или C. При прочих равных следует отдать предпочтение изделиям Grade A – они прослужат 20-30 лет при незначительной (не более 20%) деградации.
Более низкие категории качества присваиваются продукции по итогам заводских испытаний, которые выявляют отклонение от номинальных параметров не более 5% (Grade B) и 30% (Grade C) в процессе эксплуатации.
Мощность и напряжение
Мощность панелей определяют следующим образом:
- Рассчитывают среднюю суммарную мощность потребления (по показателям электросчетчика, счетам за электроэнергию). Для среднедневного потребления показатели за месяц делят на количество дней.
- К полученному результату добавляют 20-30%, чтобы получить запас с учетом КД преобразования (потерь на заряд аккумуляторов и работу инвертора).
- По полученным данным рассчитывают выходную мощность панелей с учетом длительности светового дня. Для расчетов она принимается равной 6 ч, соответственно мощность батареи должна превосходить среднее потребление в 4 раза.
- Выбирают напряжение панели. Как правило, производители предлагают батареи с выходным напряжением 12В. Однако для заряда накопителей и повышения КПД преобразования постоянного напряжения переменное на инверторе (особенно при большой мощности), выгоднее иметь более высокие значения.
Стандартно используют:
- 12 В для систем для мощностей до 1 кВт.
- 24 В или 36 В – до 5 кВт.
- 48 В – более 5 кВт.
Такие напряжения получают последовательным соединением панелей.
- Определяют пиковую мощность, для чего суммируют мощности всех потребителей в доме.
- Определяют пиковую мощность с запасом 10-20%, например, на пусковые токи электродвигателей и работу нагревательных элементов системы ГВС, стиральной и посудомоечной машин и т.д.
- По пиковой мощности определяют максимальный ток панелей.
- В справочниках находят коэффициент инсоляции (в летнее и зимнее время) для местности.
Для дальнейших расчетов следует воспользоваться формулой:
P = Kc * Wn * Ki, учитывающей
- Кс – сезонный коэффициент, для летнего времени принимается равным 0.5, для зимнего – 0.7;
- Ki – коэффициент инсоляции, для летнего и зимнего времени;
- Wn – номинальную мощность панели.
Выбрав в каталогах производителей несколько моделей батарей для каждой из них рассчитывают мощность генерации в зимнее и летнее время.
Затем определяют необходимое количество панелей, разделив рассчитанную выше среднюю мощность потребления (с запасом) на мощность генерации. Вычисления ведут для зимнего и летнего периода, в качестве итога принимают большее значение.