Ak-montazh.ru

Интернет-энциклопедия по ремонту
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Варианты гидравлического расчета водопроводных сетей

Особенности гидравлического расчета полимерных и металлических трубопроводов внутренних систем горячего водоснабжения

Для устройства трубопроводов внутренних систем горячего водоснабжения зданий (рис. 1) используется широкая гамма труб из различных материалов. Доминируют по-прежнему стальные трубы, но их постепенно вытесняют трубы из термостойких пластмасс (из металлополимеров, сшитого полиэтилена, полипропилена, полибутена, дополнительно хлорированного поливинилхлорида и некоторых других как отечественного, так и зарубежного производства). Ожидается существенная экспансия медных труб российских производителей, а также поставляемых из-за рубежа (на выходе в свет Свод правил по проектированию и монтажу трубопроводов внутренних систем водоснабжения и отопления из медных труб).

Схема возможного устройства внутренней системы горячего водоснабжения 10-этажного здания.

Для оптимального выбора тех или иных труб необходимо своевременно учесть множество экономических и технических факторов. Среди последних особое место занимает гидравлический расчет разветвленных трубопроводных сетей, к которым в полной мере можно отнести внутренние системы горячего водоснабжения. Ведь именно в процессе проведения гидравлического расчета подбираются параметры трубопроводов, которые на долгое время будут определять устойчивое снабжение горячей водой все квартиры независимо от этажности здания.

При проведении гидравлических расчетов согласно СНиПу [1] вначале следует определять потери напора на участках трубопроводов по формуле

(1)

где i – удельные потери напора; kl – коэффициент, учитывающий потери напора в местных сопротивлениях, значения которого следует принимать: 0,2 – для подающих и циркуляционных распределительных трубопроводов; 0,3 – в сетях хозяйственно-питьевых водопроводов жилых и общественных зданий; 0,5 – для трубопроводов в пределах тепловых пунктов, а также для трубопроводов водоразборных стояков с полотенцесушителями; 0,1 – для трубопроводов водоразборных стояков без полотенцесушителей и циркуляционных стояков.

В СНиПе для систем с учетом зарастания труб удельные потери напора i рекомендуется принимать по сетчатой номограмме (рис. 2).

Номограмма для гидравлического расчета стальных труб с учетом зарастания в процессе эксплуатации для систем горячего водоснабжения (СНиП 2.04.01.85)

Что касается номограммы, то в СНиПе, к сожалению, не указывается, о какой степени зарастания идет речь и по каким гидравлическим формулам номограмма разработана. Это ограничивает возможности ее использования. Для систем, где не требуется учитывать зараста-ние труб, рекомендаций по выбору гидравлических формул и номограмм не приводится.

В работе [2] для гидравлического расчета трубопроводов горячего водоснабжения рекомендуются номограммы на выровненных точках (рис. 3).

Номограммы для гидравлического расчета стальных труб горячего водоснабжения [2] при режиме гидравлического сопротивления: а) квадратичном и б) переходном

Эти номограммы дают потери напора для стальных трубопроводов того же диаметра, отличные от получаемых по номограмме СниПа.

Расчетный диаметр d для использования приведенных номограмм получается путем вычитания из значения внутреннего диаметра для соответствующего условного прохода выбранной стальной трубы значения зарастания указанного для закрытых систем теплоснабжения (табл. 1).

Имеющиеся в настоящее время фактические данные о величинах зарастаний трубопроводов горячего водоснабжения при закрытых системах теплоснабжения весьма малочисленны и отрывочны, поэтому в данной работе [2] были использованы результаты исследований для условий Москвы [3]. В условиях эксплуатации, отличных от московских, величины, приведенные в табл. 1, могут оказаться иными, поэтому этими данными авторы рекомендуют пользоваться тогда, когда фактические показатели зарастания стальных труб отсутствуют.

Номограммы построены по гидравлическим формулам, которые учитывают различные пределы изменения средних скоростей движения по трубопроводам горячей воды (температура 55 °С, принимаемая при гидравлических расчетах [2] систем горячего водоснабжения):

Объясняется это тем, что при температуре воды 60 °С граница между квадратичной областью гидравлического сопротивления и переходной областью соответствует скорости движения воды, равной 0,44 м/с. При меньших скоростях применение квадратичных формул может вызвать существенное занижение фактических потерь напора. Это может ограничить снабжение горячей водой квартиры верхних этажей в некоторых жилых домах, что нежелательно. К сожалению, авторы не сообщают, какие значения коэффициентов эквивалентной шероховатости Кэ использованы при разработке этих формул.

Совершенно другой подход к гидравлическому расчету трубопроводов внутренних систем горячего водоснабжения используется для полимерных труб [4].

Предлагаемая в [4] методика – полуэмпирическая. Она получена А. Я. Добромысловым путем аппроксимации теоретически доказанной советским ученым В. Н. Евреиновым формулы * Прандтля – Кольбрука.

( * )

Эта формула с успехом используется за рубежом для гидравлического расчета трубопроводов различного назначения и из разных материалов. Недостатком ее является то, что коэффициент гидравлического сопротивления по длине трубопровода l находится в формуле в неявном виде.

Преимуществом же методики А. Я. Добромыслова является то, что в отличие от формулы Прандтля – Кольбрука коэффициент гидравлического сопротивления l выражен в ней в явном виде. Это значительно упрощает проведение гидравлических расчетов.

Согласно методике [4] величина напора Hтр, необходимая для подачи горячей воды потребителю, определяется по формуле

Читайте так же:
Технология бестраншейной прокладки водопровода
(4)

где iт, – удельные потери напора при температуре воды t, °C (потери напора на единицу длины трубопровода), м/м;

l – длина участка трубопровода, м;

hмс – потери напора в стыковых соединениях и в местных сопротивлениях, м, (допускается S hмс принимать равной 20–30 % от S iтl);

hгеом – геометрическая высота (отметка самой высокой точки расчетного участка трубопровода), м;

hсв – свободный напор на изливе из трубопровода, м (для санитарнотехнических приборов принимается по приложению 2 СНиП 2.04.01 ).

Потери напора на единицу длины трубопровода iт без учета гидравлического сопротивления стыковых соединений следует определять по формуле

(5)

где V – средняя скорость движения воды, м/с;

g – ускорение свободного падения, м/с 2 ;

d – расчетный (внутренний) диаметр трубопровода, м.

Коэффициент гидравлического сопротивления l следует определять по формуле

(6)

где b – число подобия режимов течения воды;

Re – число Рейнольдса, фактическое.

Число подобия режимов течения воды b определяют по формуле

(7)

(при b > 2 следует принимать b = 2).

Фактическое число Рейнольдса Rеф определяется по формуле

(8)

где n – коэффициент кинематической вязкости воды, м 2 /с.

Число Рейнольдса, соответствующее началу квадратичной области гидравлических сопротивлений при турбулентном движении воды, определяется по формуле

(9)

Использование рассмотренной методики для гидравлических расчетов как полимерных, так и металлических трубопроводов по различным вариантам (к примеру, табл. 2) должно позволить оптимизировать эффективность применения труб из различных материалов и качество устройства внутренних систем горячего водоснабжения зданий.

* Из нормативов, разработчиком которых является НИИ Мосстрой, для соответствующих вариантов: 1– [2]; 2 – Свод правил по проектированию и монтажу внутренних трубопроводов водоснабжения и отопления из медных труб (в печати); 3 – Технические рекомендации по проектированию и монтажу внутреннего водопровода зданий из металлополимерных труб ТР 78-98; 4 – [6]; 5 – Технические рекомендации по проектированию и монтажу внутренних систем водоснабжения, отопления и хладоснабжения из комбинированных полипропиленовых труб ТР 125-02; 6 – Ведомственные строительные нормы по проектированию и монтажу внутренних систем водоснабжения из полипропиленовых труб «Рандом сополимер» (PPRC) ВСН 47-96.

Как видно из табл. 2, трубы из всех материалов дают меньшие потери напора, чем стальные. Что касается скоростей движения горячей воды (55 °C [2]), они во всех случаях выше, чем для стальных труб. Это повысит общие потери напора, если придется учитывать местные сопротивления. Ведь hмс будут прямо пропорциональны квадрату скоростей. Как это может выглядеть для конкретных трубопроводов внутренних систем горячего водоснабжения? Ответ на этот вопрос может быть нами дан в следующей статье.

Литература

1. СНиП 2.04.01-85*. Внутренний водопровод и канализация зданий.

2. Гейнц В. Г., Шевелев А. Ф. Номограммы для гидравлического расчета труб горячего водоснабжения // Водоснабжение и санитарная техника. 1986. № 3. С. 22–23.

3. Гейнц В. Г., Шевелев А. Ф. О гидравлическом расчете трубопроводов горячего водоснабжения // Водоснабжение и санитарная техника. 1986. № 1. С. 5–6.

4. СП 40-102-2000. Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования.

5. Добромыслов А. Я. Таблицы для гидравлических расчетов напорных и безнапорных трубопроводов из полимерных материалов / Под ред. В. С. Ромейко. Пособие к СНиП и СП. М.: ТОО «Изд-во ВНИИМП», 2000.

6. Отставнов А. А. Соединение полимерных трубопроводов. Склеивание труб из дополнительно хлорированного поливинилхлорида // Сантехника. 2003. № 2. С. 38–44.

Гидравлический расчет внутреннего водопровода

Основным назначением гидравлического расчета водопроводной сети является определение наиболее экономичных диаметров трубопровода для пропуска расчетных расходов воды, а также условий, обеспечивающих подачу воды ко всем потребителям в необходимом количестве и с наименьшими потерями напора. Расчет выполняют в следующей последовательности:

1) Подсчитывается жилая площадь всего дома

где Fэт – сумма площадей жилых комнат одного этажа (подсчитывается по плану типового этажа);

n – количество этажей.

2) Количество людей, проживающих в данном доме,

где U – количество человек;

f – санитарная норма площади на одного человека, f=12 м 2

3) Определяется количество санитарно-технических приборов в доме, (по плану типового этажа).

4) Подсчитывается вероятность одновременного открытия приборов в доме по формуле

где Qч – норма водопотребления холодной воды в часы наибольшего потребления, берется по СНиП в зависимости от способа приготовления горячей воды (таблица 3 приложения),

q– удельный расход воды водоразборных устройств, (таблица 3 приложения).

4) Далее расчет ведется по участкам. Для каждого участка вычисляются расчетные расходы на участках по формуле

где α – безразмерная величина, берется по таблице 1 приложения в зависимости от произведения РN

5) Назначая скорость 1м/с (по данным проектных организаций скорости воды во внутреннем водопроводе в пределах 0,9-1,2 м/с), определяется диаметр трубы по формуле

Читайте так же:
Как подобрать вытяжку на кухню по типу, мощности, отзывам и стоимости

согласно сортаменту труб принимается стандартный диаметр.

6) По таблице 2 приложения в зависимости от значения стандартного диаметра и расхода воды на участке уточняются скорость и уклон

7) Определяются потери напора по длине рассматриваемого участка по зависимости

где l— длина участка.

Расчет для исходных данных приведен ниже

1) Fжил =117,2·3=351,6 м 2 (с плана типового этажа)

2) U=351,6/12=29 человек

3) N=24 (с плана типового этажа)

Т.к. способ приготовления горячей воды задан газовый, принимаем

q =0,3л/с, Qч=10,5л/ч. Далее проводим гидравлический расчет трубопровода по участкам, показанным на аксонометрической схеме (рисунок 1.3),

В1

Рисунок 1.1. План типового этажа, М 1:100

В1

Рисунок 1.2. План подвала, М 1:100

Рисунок 1.3. Аксонометрическая схема внутреннего водопровода, М1:100

d= = = =0,022 м

Принимаем d=20мм, тогда

Потери напора по длине участка:

d= = = =0,0246 м

Принимаем d=25мм, тогда

Потери напора по длине участка:

d= = = =0,0264 м

Принимаем d=25мм, тогда

Потери напора по длине участка:

d= = = =0,304 м

Принимаем d=32мм, тогда

Потери напора по длине участка:

Принимаем диаметр трубы на один больше предыдущего участка d=40мм. тогда

Определяем потери напора по длине участка:

Таким образом, для устройства ввода применяются стальные трубы с противокоррозийной битумной изоляцией диаметром 40 мм.

Расчет сводим в таблицу 1.2.

Таблица 1.2 – Гидравлический расчет внутреннего водопровода

№ уч-каКол-во водоразборных приборов, NРNαРасчетный расход на уч-кеQ, л/сДиаметр трубопровода d, ммДлина расчетного уч-ка l, мСкорость движводыv, м/сУклон iПотеринапора по длине hi, м
1-240,040,2560,3842031,1900,2450,735
2-380,080,3180,4772530,8960,1040,312
3-4120,120,3670,551256,81,0370,1360,925
4-вв240,240,4850,726323,80,7590,05311,28
∑h1= 3,252
ввод240,240,4850,72640200,5810,0260,52

Вычисляется величина общего напора, требуемого для внутреннего водопровода с учетом геометрической высоты подачи воды до диктующего водоразборного устройства согласно формуле:

где Hг — геометрическая высота подачи воды от поверхности земли до самой высокой водоразборной точки:

hпл — планировочная высота (превышение пола первого этажа над поверхностью земли);

п — количество этажей;

hэт— высота этажа;

hпр — высота расположения диктующего прибора над полом;

∑ h — потери напора в сети, это сумма местных потерь напора, потерь по длине, потерь на вводе, потерь в водомерном узле:

где ∑h1– сумма потерь напора по длине расчетных участков (в таблице гидравлического расчета);

hм– местные потери напора, принимаются в размере 30% от потерь напора по длине, hм=0,3 ∑h1;

hвв – потери напора на вводе, hвв=ilвв (в таблице гидравлического расчета);

hвод– потери в водомерном узле, находятся по формуле

где S – гидравлическое сопротивление водомера, выбирается из таблицы в зависимости от калибра водомера (таблица 5 приложения);

Q – расчетный (максимальный) расход воды в здании, л/с. При этом расчетный расход не должен превышать максимального кратковременного расхода для данного калибра водомера (таблица 4 приложения). Потери напора в водомерах, учитывающих расход воды на хозяйственно-питьевые нужды, не должны превышать допустимых величин: для крыльчатых водомеров – 2,5 м, для турбинных — 1м;

h – свободный напор у прибора, зависит от вида прибора. Максимальный свободный напор для унитаза со смывным бачком принимаетсяh=5м.

Для рассматриваемого случая, подсчитывается геометрическая высота подачи воды от поверхности земли до самой высокой водоразборной точки:

Для определения потерь напора в сети, из таблицы гидравлического расчета выписываются ∑h1=3,252м и hвв=0,52м, тогда местные потери hм=0,3∑h1=0,3·3,252=0,9765м. По значению расхода Q=0,726л/с подбираем водомер (таблица 4 приложения). Подошел водомер ВК30 (крыльчатый, калибр 30), для него сопротивление S=1,3 (таблица 5 приложения). Тогда потери в водомере hвод=SQ 2 =1,3·(0,726) 2 =0,6852м, что удовлетворяет условию 0,5м<hвод=0,6852м<2,5м, это означает, что водомер подобран верно.Необходимо отметить, что крыльчатые водомеры устанавливают только на горизонтальных участках трубопроводов с резьбовыми соединениями.

Подсчитывается напор, требуемый для нормальной работы внутреннего водопровода

Переходим к проектированию внутренней канализации здания. Канализационный выпуск из дома необходимо запроектировать в сторону фасада здания для подключения к внутриквартальной канализационной сети.

Гидравлический расчет водопровода: простые методы

Рассмотрено как выполнить расчет системы водоснабжения (холодной и горячей), в чем разница и особенности. Рассказано, от чего зависит выбор насоса и фильтра для воды, и что дает результат анализа и расчета.

На сегодняшний день ни один частный дом не может считаться благоустроенным, если в нем нет системы водоснабжения. Можно подключиться к центральному водопроводу или же соорудить автономную систему подачи воды. При организации автономного водопровода нужно провести расчет системы водоснабжения, кроме того, на плечи домовладельца ложатся дополнительные затраты. Но чаще всего это бывает оправдано, так как не всегда есть возможность подключить домовладение к центральному водоснабжению. (См. также: Монтаж систем водоснабжения)

Читайте так же:
Как правильно поставить обратный клапан на насосную станцию

Расчет системы позволяет составить смету затрат на организацию водоснабжения, исходя из усредненного параметра расхода воды. При этом учитывается большой объем сведений (количество умывальников, санузлов, посудомоечных и стиральных машин душевых кабин, и так далее). Расчет водоснабжения осуществляется как для холодной, так для горячей воды.

Система водоснабжения

Рисунок 1: Система водоснабжения

Холодное водоснабжение

Расчет в этом случае учитывает три составляющих:

  • водопроводная сеть;
  • насос;
  • системы очистки воды и контроля давления.

Обычно источник воды находится под землей. Для ее извлечения можно вырыть колодец либо пробурить скважину. Если выбор пал на рытье колодца, то затраты окажутся ниже, так как его глубина сравнительно небольшая и достигает всего 15 метров. Но вместе с тем качество получаемой воды тоже может оказаться существенно ниже.

Чтобы иметь чистую воду без всяких примесей, лучше пробурить скважину. Правда, стоимость ее будет на порядок выше, и зависеть цена будет еще от того, на какой глубине залегают подземные воды. Расчет системы водоснабжения (внутреннего водопровода) определяет общий расход воды в сети, а также на отдельных ее участках. При этом берется во внимание все оборудование, относящееся к данной системе водоснабжения. (См. также: Договор водоснабжения и водотведения)

Схема холодного и горячего водоснабжения

Рисунок 2: Схема холодного и горячего водоснабжения

Скорость потока

Предположим, что наша задача – гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам нужно определить диаметр, который обеспечит приемлемую скорость движения потока через трубопровод (напомним, 0,7-1,5 м/с).

Большая скорость потока вызывает появление гидравлических шумов.

Формулы

Расход воды, скорость ее потока и размер трубопровода увязываются друг с другом следующей последовательностью формул:

  • S – площадь сечения трубы в квадратных метрах;
  • π – число “пи”, принимаемой равным 3,1415;
  • r – радиус внутреннего сечения в метрах.

Полезно: для стальных и чугунных труб радиус обычно принимается равным половине их ДУ (условного прохода). У большинства пластиковых труб внутренний диаметр на шаг меньше номинального наружного: так, у полипропиленовой трубы наружным диаметром 40 мм внутренний приблизительно равен 32 мм.

Условный проход примерно соответствует внутреннему диаметру стальной трубы.

  • Q – расход воды (м3);
  • V – скорость водяного потока (м/с) ;
  • S – площадь сечения в квадратных метрах.

Пример

Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.

Как мы уже выяснили, в этом случае скорость водяного потока ограничена м/с.

  1. Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
  2. Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
  3. Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
  4. Внутренний диаметр трубопровода, таким образом, должен быть равен как минимум 0,016 х 2 = 0,032 м, или 32 миллиметра. Это соответствует параметрам стальной трубы ДУ32.

Обратите внимание: при получении промежуточных значений между стандартными размерами труб округление выполняется в большую сторону. Цена труб с диаметром, отличающимся на шаг, различается не слишком сильно; между тем уменьшение диаметра на 20% влечет за собой почти полуторакратное падение пропускной способности водопровода.

Пропускная способность первой и третьей труб различается вчетверо.

Насосы

Основной элемент системы водозабора – это насос. Существует два типа насосов: поверхностные и погруженные. Поверхностные насосы устанавливают соответственно на поверхности. Для соединения насоса с источником вводы прокладывают трубопровод. При выборе такого насоса следует учитывать, что при работе он издает сильный шум, вследствие чего его рекомендуют располагать на некотором расстоянии от жилых помещений.

Для скважин используют погруженные насосы, которые устанавливают на дно скважины. Высота подъема воды, на которую рассчитаны такие насосы, достигает 200 метров. Единственный минус использования таких насосов в том, что ремонтные работы с ними весьма затруднительны. Поэтому лучше не экономить и выбирать качественное изделие.

Виды насосов

Рисунок 3: Виды насосов

Виды электрических насосов

Рисунок 4: Виды электрических насосов

Потеря напора

Формулы

Инструкция по расчету потери напора на участке известной длины довольно проста, но подразумевает знание изрядного количества переменных. К счастью, при желании их можно найти в справочниках.

Формула имеет вид H = iL(1+K).

  • H – искомое значение потери напора в метрах.

Справка: избыточное давление в 1 атмосферу (1 кгс/см2) при атмосферном давлении соответствует водяному столбу в 10 метров. Для компенсации падения напора в 10 метров, таким образом, давление на входе в водораспределительную сеть нужно поднять на 1 кгс/см2.

  • i – гидравлический уклон трубопровода.
  • L – его длина в метрах.
  • K – коэффициент, зависящий от назначения сети.
Читайте так же:
Как выбрать кухонный вентилятор для вытяжки: особенности монтажа и конструкции

Формула сильно упрощена. На практике изгибы трубопровода и запорная арматура тоже вызывают падение напора.

Некоторые элементы формулы явно требуют комментариев.

Проще всего с коэффициентом К. Его значения заложены в уже упоминавшийся нами СНиП за номером 2.04.01-85:

Назначение водопроводаЗначение коэффициента
Хозяйственно-питьевой0,3
Производственный, хозяйственно-противопожарный0,2
Производственно-противопожарный0,15
Противопожарный0,1

А вот с понятием гидравлического уклона куда сложнее. Он отражает то сопротивление, которое труба оказывает движению воды.

Гидравлический уклон зависит от трех параметров:

  1. Скорости потока. Чем она выше, тем больше гидравлическое сопротивление трубопровода.
  2. Диаметра трубы. Здесь зависимость обратная: уменьшение сечения приводит к росту гидравлического сопротивления.
  3. Шероховатости стенок. Она, в свою очередь, зависит от материала трубы (сталь обладает менее гладкой поверхностью по сравнению с полипропиленом или ПНД) и, в некоторых случаях, от возраста трубы (ржавчина и известковые отложения увеличивают шероховатость).

К счастью, проблему определения гидравлического уклона полностью решает таблица гидравлического расчета водопроводных труб (таблица Шевелева). В ней приводятся значения для разных материалов, диаметров и скоростей потока; кроме того, таблица содержит коэффициенты поправок для старых труб.

Уточним: поправки на возраст не требуются всем типам полимерных трубопроводов. Металлопластик, полипропилен, обычный и сшитый полиэтилен не меняют структуру поверхности весь период эксплуатации.

Размер таблиц Шевелева делает невозможной их публикацию целиком; однако для ознакомления мы приведем небольшую выдержку из них.

Вот справочные данные для пластиковой трубы диаметром 16 мм.

Расход в литрах в секундуСкорость в метрах в секунду1000i (гидравлический уклон для протяженности в 1000 метров)
0,080,7184
0,090,8103,5
0,10,88124,7
0,131,15198,7
0,141,24226,6
0,151,33256,1
0,161,41287,2
0,171,50319,8

При расчете падения напора нужно учитывать, что большая часть сантехнических приборов для нормальной работы требует определенного избыточного давления. В СНиП тридцатилетней давности приводятся данные для устаревшей сантехники; более современные образцы бытовой и санитарной техники требуют для нормальной работы избыточного давления, равного как минимум 0,3 кгс/см (3 метра напора).

Датчик не даст проточному нагревателю включиться при давлении воды ниже 0,3 кгс/см2.

Однако: на практике лучше закладывать в расчет несколько большее избыточное давление – 0,5 кгс/см2. Запас нужен для компенсации неучтенных потерь на подводках к приборам и их собственного гидравлического сопротивления.

Примеры

Давайте приведем пример гидравлического расчета водопровода, выполненного своими руками.

Предположим, что нам нужно вычислить потерю напора в домашнем пластиковом водопроводе диаметром 15 мм при его длине в 28 метров и максимально допустимой скорости потока воды, равной 1,5 м/с.

Трубы этого размера чаще всего используются для разводки воды в пределах квартиры или небольшого коттеджа.

  1. Гидравлический уклон для длины в 1000 метров будет равным 319,8. Поскольку в формуле расчета падения напора используется i, а не 1000i, это значение следует разделить на 1000: 319,8 / 1000 = 0,3198.
  2. Коэффициент К для хозяйственно-питьевого водопровода будет равным 0,3.
  3. Формула в целом приобретет вид H = 0,3198 х 28 х (1 + 0,3) = 11,64 метра.

Таким образом, избыточное давление в 0,5 атмосферы на концевом сантехническом приборе мы будем иметь при давлении в магистральном водопроводе в 0,5+1,164=1,6 кгс/см2. Условие вполне выполнимо: давление в магистрали обычно не ниже 2,5 – 3 атмосфер.

К слову: испытания водопровода при сдаче в эксплуатацию проводятся давлением, как минимум равным рабочему с коэффициентом 1,3. Акт гидравлических испытаний водопровода должен включать отметки как об их продолжительности, так и об испытательном давлении.

Образец акта гидравлических испытаний.

А теперь давайте выполним обратный расчет: определим минимальный диаметр пластикового трубопровода, обеспечивающего приемлемое давление на концевом смесителе для следующих условий:

  • Давление в трассе составляет 2,5 атмосферы.
  • Протяженность водопровода до концевого смесителя равна 144 метрам.
  • Переходы диаметра отсутствуют: весь внутренний водопровод будет монтироваться одним размером.
  • Пиковый расход воды составляет 0,2 литра в секунду.
  1. Допустимая потеря давления составляет 2,5-0,5=2 атмосферы, что соответствует напору в 20 метров.
  2. Коэффициент К и в этом случае равен 0,3.
  3. Формула, таким образом, будет иметь вид 20=iх144х(1+0,3). Несложный расчет даст значение i в 0,106. 1000i, соответственно, будет равным 106.
  4. Следующий этап – поиск в таблице Шевелева диаметра, соответствующего 1000i = 106 при искомом расходе. Ближайшее значение – 108,1 – соответствует диаметру полимерной трубы в 20 мм.

Зависимость между внутренним и наружным диаметром полипропиленового трубопровода.

Читайте так же:
Как выбрать насос, повышающий давление в водопроводе

Горячее водоснабжение

Расчет горячего водоснабжения зависит от способа извлечения горячей воды. Для этого используют газовые или электронагреватели, колонки, котельные, систему теплосети. Чаще всего в частных домах горячую воду получают из системы отопления.

Важно! Расчет системы горячего водоснабжения должен учитывать возможность установки циркуляционного трубопровода. С его помощью вода будет постоянно проходить через водонагреватель, не остывая даже при отсутствии водоразбора.

Задачи гидравлического расчета водопроводных сетей

Конечной целью расчета водопроводной сети является определение диаметров линий сети и потерь напора в них. В том случае, если известны диаметры, характеристики насосных станций, регулирующих емкостей и др., то в результате расчета определяются истинные расходы в линиях сети, действительные подачи воды всеми водопитателями и создаваемые ими напоры, а также давления во всех узлах сети и нефиксированные отборы.

Для подлежащей расчету водопроводной сети всегда должны задаваться ее конфигурация, длины участков и узловые отборы воды, В основе гидравлического расчета водопроводных сетей лежат положения о том, что распределение воды по линиям сети происходит в соответствии с законами Кирхгофа. Так, в соответствии с I законом Кирхгофа в каждом узле должен соблюдаться материальный баланс, отвечающий принципу сплошности потока. По условиям работы водопроводной сети это означает, что алгебраическая сумма расходов в любом узле сети равна нулю:

По II закону Кирхгофа требуется выполнение условия суммарного нулевого изменения перепадов давления (разности потенциалов) в любом контуре системы. Для кольцевой сети это означает, что алгебраическая сумма потерь напора в любом контуре i-й сети равна нулю:

(∑Sikqik β )I = 0, где qik — расход по участкам водопроводной сети, м 3 /с; Qi — узловые отборы, м 3 /с; Sik — гидравлическое сопротивление линии.

Если имеются напорно-расходные характеристики водопитателей F(Q)М и нефиксированных отборов F(Q)К, расположенных в узлах системы М и К, то в дополнение к последнему уравнению используются уравнения вида

Взаимодействие между водопитателями и нефиксированными отборами осуществляется через потери напора (∑Sikqik β )MK в линиях сети, их соединяющих. Распределение потоков в кольцевой сети, при котором соблюдаются указанные законы, соответствует минимуму энергии, расходуемой на преодоление потерь напора в трубах.

Прежде чем установить число уравнений I и II законов Кирхгофа, характеризующих потокораспределение в системе, рассмотрим свойства водопроводной сети. Рассматривая геометрические свойства кольцевой сети, можно установить определенную связь между числом ее элементов, т.е. числом колец, узлов и участков. Обозначив число колец через n, число узлов — через m, число участков — через р и число водопитателей и нефиксированных отборов — через е, можно установить следующую зависимость:

Это положение является следствием теоремы Эйлера о соотношении между числом граней, вершин и ребер выпуклого многогранника. Оно позволяет установить зависимость между числом уровней I и II законов Кирхгофа при расчете водопроводных сетей и числом неизвестных.

В случае если диаметры линий сети известны, можно однозначно определить расходы в линиях сети. Искомые расходы qik находятся из совместного решения системы p = m+n+e-1 уравнений I и II законов Кирхгофа, из которых n + е — нелинейные уравнения и m — 1 — линейные уравнения типа.

Для разветвленных сетей, не имеющих колец, число уравнений определяется соотношением р = m +е — 1. При отсутствии характеристик водопитателей и нефиксированных отборов их число уменьшается до m — 1.

При отыскании потокораспределения соблюдение линейных уравнений достигается на стадии предварительного потокораспределения.

В общем случае, рассматривая уравнения II закона Кирхгофа, становится ясно, что помимо неизвестных qik, подлежащих отысканию, в них входят также неизвестные диаметры линий dik. Это вызвано тем, что значения Sik, входящие в формулу потерь напора, выражаются в функции диаметров. Таким образом, любое изменение диаметров линий сети будет приводить к перераспределению расходов, протекающих по ним. С другой стороны, перераспределение расходов приводит к необходимости назначения новых диаметров. В этой ситуации сталкиваются (как уже указывалось выше) с задачей технико-экономического расчета. В результате этого расчета отысканию подлежат 2р неизвестных: р значений qik и столько же значений dik. Для одновременного нахождения всех 2р неизвестных полученных уравнений недостаточно.

Не обращаясь на данном этапе к методам полного технико-экономического расчета, можно сделать вывод, что гидравлический расчет сетей следует вести, задаваясь диаметрами. Как было отмечено выше, выбор диаметров отдельных участков сети не может быть произведен совершенно произвольно, так как диаметр, в известной степени, есть функция проводимого трубой расхода, поэтому для точного выбора диаметров необходимо назначать предварительное потокораспределение.

голоса
Рейтинг статьи
Ссылка на основную публикацию